Selective Ensemble of Decision Trees

نویسندگان

  • Zhi-Hua Zhou
  • Wei Tang
چکیده

An ensemble is generated by training multiple component learners for a same task and then combining their predictions. In most ensemble algorithms, all the trained component learners are employed in constituting an ensemble. But recently, it has been shown that when the learners are neural networks, it may be better to ensemble some instead of all of the learners. In this paper, this claim is generalized to situations where the component learners are decision trees. Experiments show that ensembles generated by a selective ensemble algorithm, which selects some of the trained C4.5 decision trees to make up an ensemble, may be not only smaller in the size but also stronger in the generalization than ensembles generated by non-selective algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Ensemble-Trees: Leveraging Ensemble Power Inside Decision Trees

Decision trees are among the most effective and interpretable classification algorithms while ensembles techniques have been proven to alleviate problems regarding over-fitting and variance. On the other hand, decision trees show a tendency to lack stability given small changes in the data, whereas interpreting an ensemble of trees is challenging to comprehend. We propose the technique of Ensem...

متن کامل

MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine

Machine learning algorithms that are both interpretable and accurate are essential in applications such as medicine where errors can have a dire consequence. Unfortunately, there is currently a tradeoff between accuracy and interpretability among state-of-the-art methods. Decision trees are interpretable and are therefore used extensively throughout medicine for stratifying patients. Current de...

متن کامل

Compact Ensemble Trees for Imbalanced Data

This paper introduces a novel splitting criterion parametrized by a scalar ‘α’ to build a class-imbalance resistant ensemble of decision trees. The proposed splitting criterion generalizes information gain in C4.5, and its extended form encompasses Gini(CART) and DKM splitting criteria as well. Each decision tree in the ensemble is based on a different splitting criterion enforced by a distinct...

متن کامل

Boosting Decision Trees

A new boosting algorithm of Freund and Schapire is used to improve the performance of decision trees which are constructed usin: the information ratio criterion of Quinlan’s C4.5 algorithm. This boosting algorithm iteratively constructs a series of decision tress, each decision tree being trained and pruned on examples that have been filtered by previously trained trees. Examples that have been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003